딥러닝에 대한 동향을 소개하지도 않고, 현 수준도 거론하지 않으면 신경회로망으로부터 시작해서 convolutional neural network을 짧게 소개하는 것으로 끝난다. 신경회로망이 multi-layer perceptron만 있는 것도 아닌데, 딥러닝 혹은 신경회로망을 지나치게 단순화해버림으로써 초보자들에게는 오히려 편견을 심어줄 우려가 크다. 시류에 편승해서 급조된 책일 뿐.
예제소스 다운로드 링크 (2017.02. 파이썬 버전 추가)
CHAPTER 1 머신러닝
1.1 머신러닝과 딥러닝
1.2 머신러닝이란
1.3 머신러닝의 난제
1.4 과적합
1.5 과적합과 싸우기
1.6 머신러닝의 종류
1.7 분류와 회귀
1.7 요약
CHAPTER 2 신경망
2.1 서론
2.2 신경망의 노드
2.3 신경망의 계층 구조
2.4 신경망의 지도학습
2.5 단층 신경망의 학습: 델타 규칙
2.6 델타 규칙의 일반 형태
2.7 SGD, 배치, 미니 배치
2.8 예제: 델타 규칙
2.9 단층 신경망의 한계
2.10 요약
CHAPTER 3 다층 신경망의 학습
3.1 서론
3.2 역전파 알고리즘
3.3 예제
3.4 비용함수와 학습 규칙
3.5 예제
3.6 요약
CHAPTER 4 신경망과 분류
4.1 서론
4.2 이진 분류
4.3 다범주 분류
4.4 예제: 다범주 분류
4.5 요약
CHAPTER 5 딥러닝
5.1 서론
5.2 심층 신경망의 성능 개선
5.3 예제
5.4 요약
CHAPTER 6 컨벌루션 신경망
6.1 서론
6.2 컨브넷의 구조
6.3 컨벌루션 계층
6.4 풀링 계층
6.5 예제: MNIST
6.6 요약
[추천사]
“딥러닝은 우리 연구소 스터디 중 가장 인기 있는 주제입니다. 하지만 초보자와 전문가 사이에는 여전히 상당한 격차가 존재하는 것도 사실입니다. 이 책은 딥러닝을 대략적으로 이해한 초보자들이 더 깊게, 하지만 너무 힘들지 않게 한 단계 올라서는 데 좋은 길잡이가 되어줄 것입니다. 특히 컨벌루션 신경망의 설명은 압권입니다.” - 김승일 모두의 연구소 소장
“현업에서 딥러닝 기술을 적용한 기기를 개발하다 보면, 딥러닝 라이브러리를 수정하거나 최적화해야 하는 경우가 많습니다. 이런 작업을 위해서는 딥러닝의 구현을 어느 정도는 이해하고 있어야 합니다. 이 책은 딥러닝의 개념부터 구현까지 간결하게 설명하고 있어, 딥러닝을 처음 접하는 개발자들에게 큰 도움이 될 것입니다. - 전정희 (주)보고넷 대표
자료명 | 등록일 | 다운로드 |
---|---|---|
예제소스(github) | 2023-08-17 | 다운로드 |
조르디 토레스
사이토 고키